Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Molecules ; 28(1)2022 Dec 21.
Article in English | MEDLINE | ID: covidwho-2244344

ABSTRACT

To control the COVID-19 pandemic, antivirals that specifically target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently required. The 3-chymotrypsin-like protease (3CLpro) is a promising drug target since it functions as a catalytic dyad in hydrolyzing polyprotein during the viral life cycle. Bioactive peptides, especially food-derived peptides, have a variety of functional activities, including antiviral activity, and also have a potential therapeutic effect against COVID-19. In this study, the hemp seed trypsinized peptidome was subjected to computer-aided screening against the 3CLpro of SARS-CoV-2. Using predictive trypsinized products of the five major proteins in hemp seed (i.e., edestin 1, edestin 2, edestin 3, albumin, and vicilin), the putative hydrolyzed peptidome was established and used as the input dataset. To select the Cannabis sativa antiviral peptides (csAVPs), a predictive bioinformatic analysis was performed by three webserver screening programs: iAMPpred, AVPpred, and Meta-iAVP. The amino acid composition profile comparison was performed by COPid to screen for the non-toxic and non-allergenic candidates, ToxinPred and AllerTOP and AllergenFP, respectively. GalaxyPepDock and HPEPDOCK were employed to perform the molecular docking of all selected csAVPs to the 3CLpro of SARS-CoV-2. Only the top docking-scored candidate (csAVP4) was further analyzed by molecular dynamics simulation for 150 nanoseconds. Molecular docking and molecular dynamics revealed the potential ability and stability of csAVP4 to inhibit the 3CLpro catalytic domain with hydrogen bond formation in domain 2 with short bonding distances. In addition, these top ten candidate bioactive peptides contained hydrophilic amino acid residues and exhibited a positive net charge. We hope that our results may guide the future development of alternative therapeutics against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Cannabis , Coronavirus Protease Inhibitors , Peptides , SARS-CoV-2 , Humans , Cannabis/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics/prevention & control , Peptides/chemistry , Peptides/isolation & purification , Peptides/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/isolation & purification
2.
Antibiotics (Basel) ; 11(10)2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2065673

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the loss of life and has affected the life quality, economy, and lifestyle. The SARS-CoV-2 main protease (Mpro), which hydrolyzes the polyprotein, is an interesting antiviral target to inhibit the spreading mechanism of COVID-19. Through predictive digestion, the peptidomes of the four major proteins in rice bran, albumin, glutelin, globulin, and prolamin, with three protease enzymes (pepsin, trypsin, and chymotrypsin), the putative hydrolyzed peptidome was established and used as the input dataset. Then, the prediction of the antiviral peptides (AVPs) was performed by online bioinformatics tools, i.e., AVPpred, Meta-iAVP, AMPfun, and ENNAVIA programs. The amino acid composition and cytotoxicity of candidate AVPs were analyzed by COPid and ToxinPred, respectively. The ten top-ranked antiviral peptides were selected and docked to the SARS-CoV-2 main protease using GalaxyPepDock. Only the top docking scored candidate (AVP4) was further analyzed by molecular dynamics simulation for one nanosecond. According to the bioinformatic analysis results, the candidate SARS-CoV-2 main protease inhibitory peptides were 7-33 amino acid residues and formed hydrogen bonds at Thr22-24, Glu154, and Thr178 in domain 2 with short bonding distances. In addition, these top-ten candidate bioactive peptides contain hydrophilic amino acid residues and have a positive net charge. We hope that this study will provide a potential starting point for peptide-based therapeutic agents against COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL